Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Interferon Cytokine Res ; 42(8): 430-443, 2022 08.
Article in English | MEDLINE | ID: covidwho-2278024

ABSTRACT

Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.


Subject(s)
Antigens, Differentiation , COVID-19 , Influenza, Human , Membrane Proteins , RNA-Binding Proteins , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , COVID-19/genetics , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Leukocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Salud Publica Mex ; 64(2): 131-136, 2022 Apr 08.
Article in Spanish | MEDLINE | ID: covidwho-1904078

ABSTRACT

OBJETIVO: Evaluar la efectividad de las vacunas contra SARS-CoV-2 para evitar muerte e intubación en pacientes hospitalizados con Covid-19. Material y métodos. Se presentó un análisis de 3 565 hospitalizaciones por SARS-CoV-2 de personas mayores de 20 años de edad, reportadas con fines de salud pública por 10 hospitales de especialidad. Se comparó a los egresados por mejoría (2 094) con los fallecidos (1 471) en modelos mixtos de regresión logística ajustados por edad, sexo, número de comorbilidades y el hospital como variable aleatoria. RESULTADOS: Un esquema completo de vacunación, con cinco tipos de vacunas disponi-bles, tuvo un efecto protector para muerte o intubación (RM: 0.67, IC95%: 0.54,0.83, 33% de protección); y para muerte (RM: 0.80, IC95%: 0.64,0.99, 20% de protección) estos datos se compararon con los que no habían sido vacunados. Todas las vacunas aplicadas mostraron un efecto protector con un RM<0.8, con intervalos de confianza variables. Conclusio-nes. El antecedente de vacunación reduce los riesgos de ser intubado y morir, aun en pacientes previamente vacunados y hospitalizados con Covid-19 grave.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , Hospitals , Humans , Retrospective Studies , SARS-CoV-2
3.
Nutr Clin Pract ; 37(1): 110-116, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1453632

ABSTRACT

BACKGROUND: Few studies have evaluated the prevalence of post-extubation dysphagia and associated factors in patients with coronavirus disease 2019 (COVID-19) . Our study assessed the prevalence of post-extubation dysphagia and body composition in patients with COVID-19 discharged from an intensive care unit (ICU). METHODS: A prospective cohort study was performed in post-ICU extubated patients with acute respiratory distress syndrome related to COVID-19 in two referral hospitals. A total of 112 patients were evaluated and included; swallowing assessment and bioelectrical impedance analysis (BIA) were performed after extubation and discharge from the ICU. To identify associations between dysphagia, lower phase angle (PhA) (<4.8°) and hydration (extracellular water/total body water < 0.390) logistic and linear regression analyses were conducted. RESULTS: The incidence of post-extubation dysphagia was 41% (n = 46). From these, 65% (n = 30) had severe swallowing impairment. Overhydration and PhA were significantly different in patients with dysphagia, and segmental hydration in the trunk and legs was higher than in arms. PhA <4.8° (odds ratio [OR], 12.2; 95% CI, 4.3-34.1; P < .05) and overhydration measured by BIA (OR, 9.1; 95% CI, 3.4-24.5; P < .05) were associated with post-extubation dysphagia in multivariate analysis. PhA (<4.8°) was associated with a lower rate of swallowing recovery at hospital discharge (log-rank test = 0.007). CONCLUSIONS: A high incidence of post-extubation dysphagia was found in patients with COVID-19. Low PhA and overhydration were associated with the presence of dysphagia. Lower PhA was an independent factor for swallowing recovery at discharge.


Subject(s)
COVID-19 , Deglutition Disorders , Deglutition Disorders/epidemiology , Deglutition Disorders/etiology , Humans , Intensive Care Units , Patient Discharge , Prospective Studies , SARS-CoV-2
4.
Front Med (Lausanne) ; 8: 699607, 2021.
Article in English | MEDLINE | ID: covidwho-1405416

ABSTRACT

Little literature exists about critically ill patients with coronavirus disease 2019 (COVID-19) from Latin America. Here, we aimed to describe the clinical characteristics and mortality risk factors in mechanically ventilated COVID-19 patients from Mexico. For this purpose, we recruited 67 consecutive mechanically ventilated COVID-19 patients which were grouped according to their clinical outcome (survival vs. death). Clinical risk factors for mortality were identified by machine-learning and logistic regression models. The median age of participants was 42 years and 65% were men. The most common comorbidity observed was obesity (49.2%). Fever was the most frequent symptom of illness (88%), followed by dyspnea (84%). Multilobe ground-glass opacities were observed in 76% of patients by thoracic computed tomography (CT) scan. Fifty-two percent of study participants were ventilated in prone position, and 59% required cardiovascular support with norepinephrine. Furthermore, 49% of participants were coinfected with a second pathogen. Two-thirds of COVID-19 patients developed acute kidney injury (AKIN). The mortality of our cohort was 44.7%. AKIN, uric acid, lactate dehydrogenase (LDH), and a longitudinal increase in the ventilatory ratio were associated with mortality. Baseline PaO2/FiO2 values and a longitudinal recovery of lymphocytes were protective factors against mortality. Our study provides reference data about the clinical phenotype and risk factors for mortality in mechanically ventilated Mexican patients with COVID-19.

7.
Front Immunol ; 12: 593595, 2021.
Article in English | MEDLINE | ID: covidwho-1229174

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is a global health threat with the potential to cause severe disease manifestations in the lungs. Although COVID-19 has been extensively characterized clinically, the factors distinguishing SARS-CoV-2 from other respiratory viruses are unknown. Here, we compared the clinical, histopathological, and immunological characteristics of patients with COVID-19 and pandemic influenza A(H1N1). We observed a higher frequency of respiratory symptoms, increased tissue injury markers, and a histological pattern of alveolar pneumonia in pandemic influenza A(H1N1) patients. Conversely, dry cough, gastrointestinal symptoms and interstitial lung pathology were observed in COVID-19 cases. Pandemic influenza A(H1N1) was characterized by higher levels of IL-1RA, TNF-α, CCL3, G-CSF, APRIL, sTNF-R1, sTNF-R2, sCD30, and sCD163. Meanwhile, COVID-19 displayed an immune profile distinguished by increased Th1 (IL-12, IFN-γ) and Th2 (IL-4, IL-5, IL-10, IL-13) cytokine levels, along with IL-1ß, IL-6, CCL11, VEGF, TWEAK, TSLP, MMP-1, and MMP-3. Our data suggest that SARS-CoV-2 induces a dysbalanced polyfunctional inflammatory response that is different from the immune response against pandemic influenza A(H1N1). Furthermore, we demonstrated the diagnostic potential of some clinical and immune factors to differentiate both diseases. These findings might be relevant for the ongoing and future influenza seasons in the Northern Hemisphere, which are historically unique due to their convergence with the COVID-19 pandemic.


Subject(s)
COVID-19 , Cytokines , Influenza A Virus, H1N1 Subtype , Influenza, Human , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 3 , Receptors, Immunologic , Adult , Aged , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , Cytokines/blood , Cytokines/immunology , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/blood , Influenza, Human/epidemiology , Influenza, Human/immunology , Male , Matrix Metalloproteinase 1/blood , Matrix Metalloproteinase 1/immunology , Matrix Metalloproteinase 3/blood , Matrix Metalloproteinase 3/immunology , Middle Aged , Prospective Studies , Receptors, Immunologic/blood , Receptors, Immunologic/immunology , Th1 Cells/immunology , Th2 Cells/immunology
8.
Nat Commun ; 12(1): 2349, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1189222

ABSTRACT

Substantial COVID-19 research investment has been allocated to randomized clinical trials (RCTs) on hydroxychloroquine/chloroquine, which currently face recruitment challenges or early discontinuation. We aim to estimate the effects of hydroxychloroquine and chloroquine on survival in COVID-19 from all currently available RCT evidence, published and unpublished. We present a rapid meta-analysis of ongoing, completed, or discontinued RCTs on hydroxychloroquine or chloroquine treatment for any COVID-19 patients (protocol: https://osf.io/QESV4/ ). We systematically identified unpublished RCTs (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, Cochrane COVID-registry up to June 11, 2020), and published RCTs (PubMed, medRxiv and bioRxiv up to October 16, 2020). All-cause mortality has been extracted (publications/preprints) or requested from investigators and combined in random-effects meta-analyses, calculating odds ratios (ORs) with 95% confidence intervals (CIs), separately for hydroxychloroquine and chloroquine. Prespecified subgroup analyses include patient setting, diagnostic confirmation, control type, and publication status. Sixty-three trials were potentially eligible. We included 14 unpublished trials (1308 patients) and 14 publications/preprints (9011 patients). Results for hydroxychloroquine are dominated by RECOVERY and WHO SOLIDARITY, two highly pragmatic trials, which employed relatively high doses and included 4716 and 1853 patients, respectively (67% of the total sample size). The combined OR on all-cause mortality for hydroxychloroquine is 1.11 (95% CI: 1.02, 1.20; I² = 0%; 26 trials; 10,012 patients) and for chloroquine 1.77 (95%CI: 0.15, 21.13, I² = 0%; 4 trials; 307 patients). We identified no subgroup effects. We found that treatment with hydroxychloroquine is associated with increased mortality in COVID-19 patients, and there is no benefit of chloroquine. Findings have unclear generalizability to outpatients, children, pregnant women, and people with comorbidities.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Pregnancy Complications, Infectious/mortality , Adult , COVID-19/complications , COVID-19/virology , Child , Chloroquine/administration & dosage , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Comorbidity , Female , Humans , Hydroxychloroquine/administration & dosage , International Cooperation , Odds Ratio , Patient Participation/statistics & numerical data , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , Randomized Controlled Trials as Topic/statistics & numerical data , SARS-CoV-2
9.
Front Immunol ; 12: 633297, 2021.
Article in English | MEDLINE | ID: covidwho-1133913

ABSTRACT

The C-X-C motif chemokine ligand 17 (CXCL17) is chemotactic for myeloid cells, exhibits bactericidal activity, and exerts anti-viral functions. This chemokine is constitutively expressed in the respiratory tract, suggesting a role in lung defenses. However, little is known about the participation of CXCL17 against relevant respiratory pathogens in humans. Here, we evaluated the serum levels and lung tissue expression pattern of CXCL17 in a cohort of patients with severe pandemic influenza A(H1N1) from Mexico City. Peripheral blood samples obtained on admission and seven days after hospitalization were processed for determinations of serum CXCL17 levels by enzyme-linked immunosorbent assay (ELISA). The expression of CXCL17 was assessed by immunohistochemistry (IHQ) in lung autopsy specimens from patients that succumbed to the disease. Serum CXCL17 levels were also analyzed in two additional comparative cohorts of coronavirus disease 2019 (COVID-19) and pulmonary tuberculosis (TB) patients. Additionally, the expression of CXCL17 was tested in lung autopsy specimens from COVID-19 patients. A total of 122 patients were enrolled in the study, from which 68 had pandemic influenza A(H1N1), 24 had COVID-19, and 30 with PTB. CXCL17 was detected in post-mortem lung specimens from patients that died of pandemic influenza A(H1N1) and COVID-19. Interestingly, serum levels of CXCL17 were increased only in patients with pandemic influenza A(H1N1), but not COVID-19 and PTB. CXCL17 not only differentiated pandemic influenza A(H1N1) from other respiratory infections but showed prognostic value for influenza-associated mortality and renal failure in machine-learning algorithms and regression analyses. Using cell culture assays, we also identified that human alveolar A549 cells and peripheral blood monocyte-derived macrophages increase their CXCL17 production capacity after influenza A(H1N1) pdm09 virus infection. Our results for the first time demonstrate an induction of CXCL17 specifically during pandemic influenza A(H1N1), but not COVID-19 and PTB in humans. These findings could be of great utility to differentiate influenza and COVID-19 and to predict poor prognosis specially at settings of high incidence of pandemic A(H1N1). Future studies on the role of CXCL17 not only in severe pandemic influenza, but also in seasonal influenza, COVID-19, and PTB are required to validate our results.


Subject(s)
Biomarkers/metabolism , Chemokines, CXC/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/diagnosis , Lung/metabolism , Mycobacterium tuberculosis/physiology , SARS-CoV-2/physiology , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Chemokines, CXC/genetics , Chemokines, CXC/immunology , Cohort Studies , Disease Progression , Female , Humans , Influenza, Human/mortality , Lung/pathology , Male , Mexico , Middle Aged , Pandemics , Patient Outcome Assessment , Prognosis , Survival Analysis , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/mortality , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL